

基于后验误差分析的多角度偏振成像仪 气溶胶反演测试

王涵1*, 孙晓兵2, 赵梅如3**, 秦凯1

¹中国矿业大学环境与测绘学院,江苏 徐州 221116; ²中国科学院安徽光学精密机械研究所,安徽 合肥 230031; ³安徽师范大学地理与旅游学院,安徽 芜湖 241000

摘要 通过分析多角度偏振成像仪(DPC)的后验误差,测试DPC的气溶胶反演效果,为算法改进提供支持。使用GRASP (generalized retrieval of aerosol and surface properties)算法在同等条件下对DPC和POLDER(polarization and directionality of the earth's reflectance)数据进行反演,分析两种传感器的强度(RI)和偏振(RP)的反演残差及气溶胶光学厚度(AOD)误差;讨论山区和非山区AOD的反演精度及加入偏振信息对反演的改进。在多数波段,DPC的AOD反演精度接近 POLDER,但在 865 nm 波段二者有较大正向偏差;RI@565、RI@865及RP@865的绝对值较大且较为离散;非山区上空 DPC与POLDER反演精度接近,但在山区二者均出现系统性偏高,DPC尤为明显;偏振信息的加入可以有效改善仅强度条件下的反演结果;扣除干扰因素,非山区上空 AOD@670落人期望误差范围的比例为63.7%,相关系数为0.828。 关键词 遥感与传感器;气溶胶;偏振;多角度偏振成像仪

中图分类号 P407.4 **文献标志码** A

DOI: 10.3788/AOS230569

1引言

气溶胶是地球大气系统的重要组成部分,对辐射 强迫^[1]、气象^[2]、环境^[3]、定量遥感^[4]以及人类健康^[5]有 重大影响。科学研究及社会生产生活对高精度气溶胶 产品的需求持续增长^[6]。

在基于强度信息的遥感基础上,多光谱、多角度和 偏振的多维观测可以更好地实现全球气溶胶探测。分 别搭载 ADEOS-1(1996年)、ADEOS-2(2002年)和 PARASOL (2004 年) 卫星的 POLDER (polarization and directionality of the earth's reflectance)系列传感器 是其中代表,推动了气溶胶遥感及相关传感器的研究。 POLDER-1 和 POLDER-2 在 轨运行时间 较短, POLDER-3运行超过8年时间,因此被广泛使用(本研 究采用的即为POLDER-3数据,后文简称POLDER)。 POLDER可以提供3个偏振波段、6个非偏振波段以 及所有波段最多14个角度的观测数据。早期的气溶 胶偏振反演算法基于气溶胶和地表类型的设定实现了 海洋和陆地上空的气溶胶反演[7-8]。段民征等[9]也开展 了同时反演 POLDER 多维观测的气溶胶和地表反照 率的研究。随着地表强度/偏振双向反射分布函数 (BRDF/BPDF) 半经验模型^[10-12]的发展, GRASP (generalized retrieval of aerosol and surface properties) 算法^[13]和 SRON (Netherlands Institute for space research)算法^[14]实现了使用多维数据同时反演地/海 表反射模型参数和气溶胶光学与微物理特性参数。国 内也陆续开展了基于 POLDER 强度和偏振信息的气 溶胶遥感研究,实现了气溶胶光学厚度(AOD)和细粒 子比^[15]、气溶胶类型^[16]及粒子谱分布^[17]反演。此外, APS (aerosol polarimetry sensor)、POSP (particulate observing scanning polarimeter)、CAPI (cloud and aerosol polarimetric imager)、MAI (multi-angle polarization imager)、3MI (multi-view multi-channel multi-polarization imaging mission)和 HARP (hyperangular rainbow polarimeter)等已运行和计划运行的传 感器也为偏振遥感的发展提供了支撑,进而使基于多 维观测数据的气溶胶反演算法的需求增加^[18]。

多角度偏振成像仪(DPC)传感器是我国用于全 球云和气溶胶观测而开发的,最早用于航空观测,于 21世纪初研制成功,并实现了区域气溶胶观测^[19]。用 于卫星观测的 DPC 分别搭载高分五号 01 星(2018 年)、02 星(2021年)和大气环境监测卫星(2022年)开 展全球大气环境监测。本研究所用数据来自高分五号 02 星上的 DPC-2 传感器(后文简称 DPC),可以获取 3

收稿日期: 2023-02-20; 修回日期: 2023-03-22; 录用日期: 2023-04-13; 网络首发日期: 2023-05-08

基金项目: 国家自然科学基金(42075132)

通信作者: *ms.h.wang@cumt.edu.cn; **zhaomr_cc@163.com

个偏振波段及5个非偏振波段,最多17个角度的观测 数据。郑逢勋等^[20]对DPC反演结果后验误差的影响 因素进行了模拟分析;Li等^[21]使用DPC偏振数据反演 了细模态AOD,并绘制了全球最高分辨率的雾霾地 图;Wang等^[22]使用DPC数据初步反演了典型区域的 AOD和Angstrom指数(AE)。目前依然迫切需要 DPC提供可靠的科学级和应用级的气溶胶产品。针 对反演结果后验误差的分析是测试DPC性能的一个 重要手段。本文使用GRASP反演算法,对DPC的反 演结果进行误差分析,通过与POLDER反演效果对 比,分析气溶胶反演误差对波段和散射角的依赖关系, 讨论山区和偏振信息对DPC反演的影响,测试DPC 在气溶胶遥感方面的能力。

2 数据与测试流程

2.1 数 据

测试分析所用的数据包括DPC与POLDER的卫星观测数据以及AERONET(aerosol robotic network)

第 43 卷 第 24 期/2023 年 12 月/光学学报

地基数据,所用数据的细节信息如表1所示。 POLDER的空间分辨率约为5.3 km×6.2 km,在运行 期间可以提供超过9年的多光谱、多角度的偏振波段 (490、670、865 nm)和非偏振波段(443、565、763、765、 910、1020 nm)观测数据。目前高分五号 02 星所搭载 的DPC已经在轨运行超过一年,可以提供稳定数据, 其空间分辨率约为3.5 km×3.5 km,可以获取3个偏 振波段(490、670、865 nm)、5个非偏振波段(443、565、 763、765、910 nm)以及所有波段最多17个角度的观测 数据。在测试过程中,需要使用 DPC 和 POLDER 的 L1级产品数据,数据包括各波段表观反射率、观测几 何关系、海陆标记、经纬度等。AERONET采用地面 太阳光度计进行大气参数测量,通过测量可见光至近 红外波段范围内一系列波段大气对太阳直接辐射的消 光系数及天空光,可提供范围为0.34~1.06 μm的 AOD数据及其他光学与微物理特性数据。本研究采 用AERONET Level 2.0数据中的AOD作为验证标 准值。

表1 DPC反演测试所需数据说明

Table 1	Description	of data	used in	n DPC	inversion test	t
---------	-------------	---------	---------	-------	----------------	---

Data source	Data level	Collection time	Parameter			
DPC	L1	2022				
POLDER	L1	2012	Multi-spectral intensity and polarized reflectance, observation geometry, and so			
AERONET	Level 2.0	2012 and 2022	Multi-spectral AODs			

2.2 测试流程

整个流程经过数据匹配和反演,从波段和散射角 两方面开展分析,并与POLDER在同等条件下进行 对比。

1)数据匹配

为了提升测试效率,需要将卫星数据与地基数据 进行时空匹配、裁剪和存储,后续计算均以此为基础。 首先,确定AERONET站点上空卫星过境时间,然后 确定AERONET站点所在像元;选取卫星过境前后各 30 min内的AERONET数据,如果时间区间内的数据 超过一条,取AOD平均值存储;同时以AERONET站 点所在像元为中心裁剪出相应邻域(由于 DPC 与 POLDER空间分辨率不同, DPC选取5×5邻域, POLDER选取3×3邻域,从而使二者反演结果的空间 分辨率接近)。此外,气溶胶反演精度会受山区地表起 伏影响[23],因此,将匹配数据按照山区和非山区分别进 行分析。依据《1:5000 1:10000 地形图航空摄影测量 外业规范》(GB/T 13977-2012)中的地形类别划分标 准,选择25km范围内地面倾角大于2°、海拔落差大于 20 m的区域作为山区,其他为非山区。根据 POLDER 和 DPC 在轨运行时间选择了 2012 年 POLDER 和 2022年DPC的观测数据进行测试和对比,最终分别成 功匹配了1591条(其中山区463条)及1483条(其中山 区408条)数据。

2) 气溶胶反演

利用 GRASP 算法反演已匹配的 DPC 与 POLDER 数据,反演程序由 GRASP-OPEN(https:// www.grasp-open.com/)提供。在反演过程中采用 multi-pixel 模式,地表强度和偏振反射分别采用 Ross_Li BRDF 和 Maignan BPDF 模型^[10-11],气溶胶参 数由初始估计和先验知识约束。为了测试 DPC 的反 演性能,确保在同等条件下进行对比:①没有直接采用 GRASP 发布的 POLDER 反演产品,而是同时开展 DPC 与 POLDER 数据的反演;②在反演过程中,只采 用 DPC 与 POLDER 共同的波段,即 443、490、565、 670、865 nm(去除用于探测云顶氧压的 763、765 nm 波段)。

3)波段因素分析

应用于 DPC 和 POLDER 反演的 GRASP 算法可 以提供多波段的气溶胶光学特性参数(包括 AOD、 AE、单次散射反照率等)、微物理特性参数(包括复折 射指数、谱分布等)以及地表特性参数。利用 SOS (successive order of scattering)^[24]辐射传输程序,以 DPC 和 POLDER 的反演结果作为输入开展正向模 拟,得到强度与偏振表观反射率,与观测值对比得到各 波段、各角度的反演残差(RI和 RP分别表示强度和偏 振残差)。由于 GRASP 产品中只提供总的反演残差, 这里使用 SOS 重新进行计算以得到多波段和多角度

第 43 卷 第 24 期/2023 年 12 月/光学学报

的残差分布。在此基础上分析各波段 RI和 RP的分布 情况;然后,以AERONET 观测的多波段 AOD 为标 准,在同等条件下对比 DPC 和 POLDER 反演的 AOD 相对 AERONET 产品的误差分布差异。

4)角度因素分析

卫星观测散射角多数分布在100°~175°之间,按 照5°间隔研究RI和RP的分布情况,以分析散射角对 RI和RP的影响。由于角度受地形影响明显,按照山 区和非山区分别开展分析,并与POLDER在同等条件 下进行对比。因此,分别开展RI和RP的散射角依赖 以及山区与非山区的对比分析。

- 3 结 果
- 3.1 波 段

RI和RP的波段分布如图1所示,图1(a)、(b)分

別对应 DPC 和 POLDER。从图 1 可以看出:1) DPC 与 POLDER 的 RI 和 RP 均处在较低水平,分别在 10× 10⁻³和 10×10⁻⁴上下;2)从误差棒(标准差)来看,DPC 与 POLDER 的 RI 和 RP 总体分布较为集中,但是对 DPC 来说, RI@565、RI@865 以及 RP@865 的误差棒 较大,分布较为离散。

为了更直观地展示反演结果的误差情况,将各个 波段反演的AOD与对应的AERONET观测结果进行 统计对比。由于AERONET与DPC和POLDER波 段并不严格一致,需要将AERONET观测的AOD转 换到与DPC和POLDER对应的波段上,表示为

$$\ln[\tau(\lambda)] = a + b \ln \lambda + c \ln \lambda^2, \qquad (1)$$

式中: $\tau(\lambda)$ 为 λ 波段的AOD;a、b和c为拟合系数,通过 AERONET多波段AOD可以拟合得到对应系数。通 过式(1)可以实现精确拟合,误差小于0.02^[25]。

图1 反演残差的波段分布。(a)DPC;(b)POLDER Fig. 1 Wavelength dependences of retrieval residuals. (a) DPC; (b) POLDER

利用多个统计数据分别对 DPC 和 POLDER 相应 波段的 AOD 与 AERONET 结果进行误差分析,包括 拟合直线的斜率(k)、观测均值(mean value)、平均偏 差(mean bias)、相关系数(R)、均方根误差(RMSE)以 及期望误差区间(R_{EE} =0.05+0.15 τ ,其中 τ 为 AERONET 观测结果)分布百分比,结果如表2所示。 可以看出:1)POLDER总体表现较为稳定,反演结果 较好,可以作为 DPC 的参考对象;2)DPC 的反演结果 总体上与AERONET一致性较高,体现了DPC在气 溶胶观测方面的能力;3)DPC除865 nm 波段拟合斜率 为1.28,其他波段拟合斜率均接近于1;4)除865 nm 波段外的 mean value 能反映出 AOD 的波段变化规律; 5) mean bias 均为正值,反映了反演结果有一定程度的 正系统偏差;6)所有波段的相关系数均较高,RMSE也 处在合理范围内;7)DPC中,AOD@865在 within *R*_{FE} 范围内的比例较低,而在 above *R*_{EE}范围内的比例过

第 43 卷 第 24 期/2023 年 12 月/光学学报

研究论文

高,表明AOD@865严重偏高;8)DPC各个波段处在 above R_{EE}的比例普遍高于处在below R_{EE}的比例,也表 明了反演结果存在普遍高估的情况。综合拟合斜率和 期望误差区间分布百分比,DPC的865 nm 波段的 AOD被严重高估而其他波段不存在这种现象,这应该 与DPC的L1级数据有关。

表2 各波段对应的DPC与POLDER AOD反演结果统计参数 Table 2 Statistical parameters from DPC and POLDER retrieved AODs at different wavelengths

Sensor	DPC					POLDER					
Wavelength / nm	443	490	565	670	865	443	490	565	670	865	
k	1.02	0.93	0.88	0.99	1.28	0.91	0.89	0.95	1.02	1.05	
Mean value	0.33	0.28	0.26	0.21	0.28	0.35	0.29	0.24	0.21	0.18	
Mean bias	0.095	0.044	0.069	0.052	0.112	0.087	0.075	0.062	0.034	0.041	
R	0.81	0.85	0.83	0.84	0.81	0.89	0.88	0.87	0.89	0.91	
RMSE	0.25	0.21	0.20	0.16	0.23	0.24	0.19	0.19	0.18	0.15	
Within $R_{\scriptscriptstyle \mathrm{EE}}$ / $\%$	45.02	51.18	50.50	53.99	31.33	48.73	58.46	55.56	60.96	59.58	
Above $R_{\rm EE}$ / ½	39.83	33.08	23.47	30.17	53.04	33.18	29.82	33.05	25.05	24.16	
Below $R_{\rm EE}$ / ½	15.15	15.74	26.03	15.84	15.63	18.09	11.72	11.39	13.99	16.26	

3.2 散射角

按照散射角分布情况对 RI和 RP进行分析,以研 究残差与散射角的相关关系。由于小于 100°和大于 175°的数据量较少,这里对在 100°~175°范围内以每5° 为一个区间的散射角开展分析。同时由于地形条件对 观测影响较大,在分析过程中按照山区和非山区(包括 城区)分别开展残差对比,结果如图 2(非山区)和图 3 (山区)所示。从图 2、3可以看出:1)山区的 RI和 RP 均值高于非山区,且分布较为离散,说明由于山区地形 起伏而产生的观测几何关系、地气耦合等因素对气溶 胶反演结果的影响较大;2)非山区的RI和RP均较为 集中,但是在散射角较大的情况下(大于160°)标准差 较大,表明大散射角情况下出现了RI和RP较为离散 的情况,这是由于在辐射传输模拟时后向散射会带来 较大的误差;3)在非山区,RI和RP随角度变化不大, 但山区的RI随角度波动较大,RP较为稳定;4)DPC与

Fig. 2 Scattering angle dependences of retrieval residuals in non-mountain area. (a) DPC; (b) POLDER

图 3 山区反演残差的散射角分布。(a)DPC;(b)POLDER Fig. 3 Scattering angle dependences of retrieval residuals in mountain area. (a) DPC;(b) POLDER

POLDER 残差的角度特性较为一致,没有明显的差别。

4 讨 论

4.1 山区与非山区反演误差

从 RI 和 RP 的分布可以看出, 不论是 DPC 还是 POLDER,在山区均会产生较大的偏差和不确定性。 这里从反演AOD的误差出发,分析山区与非山区条件 下的反演结果,探索山区的复杂条件对DPC气溶胶反 演结果的影响。从上述分析可以看出,DPC在670 nm 波段反演的AOD较为稳定,这里利用AOD@670开展 分析。图 4 是 DPC 和 POLDER 在山区和非山区反演 的 AOD 与 AERONET 的反演结果对应的偏差分布曲 线和散点分布。从图4可以看出:1)反演误差分布近 似高斯曲线,中心点在零点附近;2)不论是DPC还是 POLDER,山区反演的AOD均显著偏高,非山区的反 演结果大部分处于期望误差范围内(Within R_{EE}为 50%以上);3)在非山区,POLDER的反演结果从相关 系数、RMSE以及落入期望误差区间的比例来看,均稍 微优于 DPC 反演结果;4) 在山区, POLDER 落入 R_{ee} 的比例为42.6%,显著高于DPC(32.2%)。总体来 说,DPC在非山区的反演能力接近于POLDER,而在 山区落后于 POLDER。由于 DPC 的空间分辨率高于 POLDER,因此,其在山区上空利用BRDF和BPDF 模型开展反演时受地形影响较大。

4.2 偏振对反演结果的改善

从上述分析中发现,大散射角情况下反演结果会 产生较大的残差,在山区上空也是如此。为了获取较高的反演精度,下面只使用非山区观测数据,并且把大 于160°散射角的观测数据扣除,尝试获取670 nm 波段 DPC 的高精度反演结果。分别分析单一强度(I)反演 以及强度与偏振结合(I+P)反演结果,来讨论加入偏 振信息对 AOD 反演结果的影响。误差分布和散点分 布结果如图5所示。从图5可以看出,加入偏振信息会 使 AOD 反演效果有较大的提升,相关性(0.763 升至 0.808)、RMSE(0.373 降至 0.213)、mean bias(0.117 降至 0.012)、落入 R_{EE}的比例(44.4% 升至55.7%)均 有所改善。对比图5(b)和图4(a)可以看出,在反演过 程中扣除大散射角会使反演效果有一定改善,但改善 效果并不十分明显。

5 结 论

基于GRASP反演算法测试了DPC气溶胶反演结 果受波段和散射角的影响情况,并讨论了山区与非山 区条件下DPC的反演能力以及加入偏振信息对反演 结果的提升效果。

DPC在不同波段的残差和反演结果有所差异,同 等条件下565、865 nm 波段的 RI 以及 865 nm 波段的

图4 DPC与POLDER在山区与非山区的AOD反演结果散点图。(a)非山区,DPC;(b)山区,DPC;(c)非山区,POLDER;(d)山区, POLDER

Fig. 4 Scatter diagrams of retrieved AODs from DPC and POLDER in mountain and non-mountain area. (a) Non-mountain, DPC; (b) mountain, DPC; (c) non-mountain, POLDER; (d) mountain, POLDER

图 5 DPC的AOD反演结果散点分布图。(a)仅使用强度;(b)同时使用强度与偏振观测信息 Fig. 5 Scatter diagrams of retrieved AODs from DPC. (a) Only use intensity information; (b) use intensity and polarization information

RP相较POLDER及DPC其他波段要差一些。由于 POLDER并没有在同等条件下表现出明显的差异,因此,这种现象的出现与DPC的L1级数据有关。虽然 DPC在865nm波段的AOD误差较大,但AOD的精 度在670nm波段却很优异。由于所有波段共同参与 反演,相互之间会有一定的约束,在865nm波段出现 较大误差的情况下DPC依然展现出了较好的反演效 果,表明DPC在气溶胶遥感中有较大的潜力。

大散射角情况(后向散射)下,辐射传输模型的模 拟精度会降低,进而影响反演精度。在实际的多角度 反演中,去除大散射角后反演精度的提升效果并不显 著,这是因为:1)大散射角数量较少,对反演的总体影 响较小;2)在多角度观测情况下,受其他观测角度的约 束,大散射角的影响有所降低。

引入偏振信息后,DPC 气溶胶反演精度提升明显。在多角度遥感条件下,地表和气溶胶模型对反演结果的影响较大,偏振信息在估计地表和气溶胶模型 方面可以补充强度信息的不足进而提升反演的精度。

DPC和POLDER在山区的反演精度均低于非山 区,山区复杂的观测条件导致山区气溶胶反演精度较低,这也给后续相关传感器的研制和算法设计提出了 要求。同等条件下,DPC在非山区的反演结果与 POLDER接近,但在山区差别较大。DPC的空间分辨 率较POLDER要高,虽然在反演过程中通过像元聚合 使得反演结果的空间分辨率接近,但是由于山区地表 的复杂性,像元聚合方法、几何关系重构、地气耦合等 多种因素会影响气溶胶反演结果,这也将是山区气溶 胶遥感需要解决的问题。

参考文献

- Chen C, Dubovik O, Schuster G L, et al. Multi-angular polarimetric remote sensing to pinpoint global aerosol absorption and direct radiative forcing[J]. Nature Communications, 2022, 13(1): 1-11.
- [2] Guo J P, Su T N, Chen D D, et al. Declining summertime local-scale precipitation frequency over China and the United States, 1981-2012: the disparate roles of aerosols[J]. Geophysical Research Letters, 2019, 46(22): 13281-13289.
- [3] 陈洪滨,范学花,夏祥鳌.大气气溶胶的卫星遥感及其在气候和环境研究中的应用[J].大气科学,2018,42(3):621-633.
 Chen H B, Fan X H, Xia X A. Review of satellite remote sensing of atmospheric aerosols and its applications in climate and environment studies[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(3): 621-633.
- [4] 王涛,周川杰,易维宁,等.基于大气校正提升亚米级卫星影 像质量[J].光学学报,2021,41(11):1101002.
 Wang T, Zhou C J, Yi W N, et al. Improving sub-meter satellite image quality based on atmospheric correction[J]. Acta Optica Sinica, 2021, 41(11): 1101002.
- [5] Partanen A I, Landry J S, Matthews H D. Climate and health implications of future aerosol emission scenarios[J]. Environmental Research Letters, 2018, 13(2): 024028.
- [6] 毛前军,金穗穗.2009年至2018年全球气溶胶光学厚度时空 分布特性研究[J].激光与光电子学进展,2021,58(3):0301001.
 Mao Q J, Jin S S. Investigation of spatial and temporal distribution characteristics of global aerosol optical depth from

第 43 卷 第 24 期/2023 年 12 月/光学学报

2009 to 2018[J]. Laser & Optoelectronics Progress, 2021, 58 (3): 0301001.

- [7] Mishchenko M I, Travis L D. Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D14): 16989-17013.
- [8] Deuzé J L, Bréon F M, Devaux C, et al. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D5): 4913-4926.
- [9] 段民征,吕达仁.利用多角度 POLDER 偏振资料实现陆地上 空大气气溶胶光学厚度和地表反照率的同时反演 I.理论与模 拟[J].大气科学,2007,31(5):757-765. Duan M Z, Lü D R. Simultaneously retrieving aerosol optical depth and surface albedo over land from POLDER's multi-angle polarized measurements. I: theory and simulations[J]. Chinese Journal of Atmospheric Sciences, 2007, 31(5): 757-765.
- [10] Li X, Strahler A H. Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2): 276-292.
- [11] Maignan F, Bréon F M, Fédèle E, et al. Polarized reflectances of natural surfaces: spaceborne measurements and analytical modeling[J]. Remote Sensing of Environment, 2009, 113(12): 2642-2650.
- [12] 提汝芳,樊依哲,黄红莲,等.基于高分五号卫星 DPC和 AERONET站点数据的地表BPDF模型对比分析[J].光学学报,2022,42(18):1828003.
 Ti R F, Fan Y Z, Huang H L, et al. Comparative analysis of BPDF land surface models based on DPC measurements of Gaofen-5 satellite and data of AERONET sites[J]. Acta Optica Sinica, 2022, 42(18): 1828003.
- [13] Dubovik O, Herman M, Holdak A, et al. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations[J]. Atmospheric Measurement Techniques, 2011, 4(5): 975-1018.
- [14] Hasekamp O P, Litvinov P, Butz A. Aerosol properties over the ocean from PARASOL multiangle photopolarimetric measurements[J]. Journal of Geophysical Research, 2011, 116 (D14): D14204.
- [15] Cheng T, Gu X, Xie D, et al. Aerosol optical depth and finemode fraction retrieval over East Asia using multi-angular total and polarized remote sensing[J]. Atmospheric Measurement Techniques, 2012, 5(3): 501-516.
- [16] Xie D H, Cheng T H, Zhang W, et al. Aerosol type over East Asian retrieval using total and polarized remote sensing[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 129(11): 15-30.
- [17] Wang Z T, Chen L F, Li Q, et al. Retrieval of aerosol size distribution from multi-angle polarized measurements assisted by intensity measurements over East China[J]. Remote Sensing of Environment, 2012, 124: 679-688.
- [18] Dubovik O, Li Z Q, Mishchenko M I, et al. Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 224: 474-511.
- [19] Cheng T H, Gu X F, Xie D H, et al. Simultaneous retrieval of aerosol optical properties over the Pearl River Delta, China using multi-angular, multi-spectral, and polarized measurements [J]. Remote Sensing of Environment, 2011, 115(7): 1643-1652.
- [20] 郑逢勋,侯伟真,李正强.高分五号卫星多角度偏振相机最优
 化估计反演:角度依赖与后验误差分析[J].物理学报,2019,68
 (4):040701.

Zheng F X, Hou W Z, Li Z Q. Optimal estimation retrieval for directional polarimetric camera onboard Chinese Gaofen-5 satellite: an analysis on multi-angle dependence and a posteriori

error[J]. Acta Physica Sinica, 2019, 68(4): 040701.

- [21] Li Z Q, Xie Y S, Hou W Z, et al. Global haze aerosol distribution: a direct view by Geofen-5 satellite with 3.3 km spatial resolution[EB/OL]. (2019-06-17) [2022-11-12]. https:// arxiv.org/abs/1906.09911.
- [22] Wang H, Sun X B, Yang L K, et al. Aerosol retrieval algorithm based on adaptive land – atmospheric decoupling for polarized remote sensing over land surfaces[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 219: 74-84.
- [23] Wang H, Zhai Y C, Zhao M R, et al. Evaluation of aerosol

第 43 卷 第 24 期/2023 年 12 月/光学学报

optical depth products from multiangular and polarized satellite measurements over mountainous areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4109810.

- [24] Lenoble J, Herman M, Deuzé J L, et al. A successive order of scattering code for solving the vector equation of transfer in the earth's atmosphere with aerosols[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 107(3): 479-507.
- [25] Eck T F, Holben B N, Reid J S, et al. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D24): 31333-31349.

Aerosol Inversion Test of Directional Polarimetric Camera Based on Posterior Error Analysis

Wang Han^{1*}, Sun Xiaobing², Zhao Meiru^{3**}, Qin Kai¹

¹School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China;

²Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, Anhui, China; ³School of Geography and Tourism, Anhui Normal University, Wuhu 241000, Anhui, China

Abstract

Objective Aerosols are an important component of the earth's atmospheric system and exert significant effects on radiation forcing, meteorology, environment, quantitative remote sensing, and human health. The demand for high-precision aerosol products in scientific research and social production continues to grow. Multi-spectral, multi-angular, and polarization observations can better achieve global aerosol detection. The directional polarimetric camera (DPC) sensor is currently carried on satellites Gaofen-5A, Gaofen-5B, and the atmospheric environment monitoring satellite to conduct global atmospheric environment monitoring. DPC can obtain observation data from three polarization bands and five non-polarization bands, with a minimum of nine and a maximum of seventeen angles. Currently, there is an urgent need for DPC to provide aerosol products of reliable scientific and application significance. The posterior error analysis in inversion results is an important tool in testing DPC performance.

Methods The entire process of our research includes data matching, aerosol inversion, and analysis of error dependence on wavelength and scattering angle. At the same time, the DPC and polarization and directionality of the earth's reflectance (POLDER) results are compared in the same conditions. First, the satellite transit time over the aerosol robotic network (AERONET) site and the pixel where the AERONET site is located are determined through spatio-temporal matching, and the matching results are trimmed and stored. Second, the generalized retrieval of aerosol and surface properties (GRASP) algorithm is adopted to retrieve the matched DPC and POLDER data. To test the performance of DPC and ensure the comparison in the same conditions, we employ the common band of DPC and POLDER to retrieve both data. Third, the successful order of scattering (SOS) radiation transfer program is leveraged to conduct forward simulation with the inversion results of DPC and POLDER as inputs. Compared with the observed values, the inversion residuals for each band and angle are obtained (RI and RP representing intensity and polarization residuals, respectively), and the distribution of RI and RP in each band is analyzed. Then, the multi-band aerosol optical depth (AOD) observed by AERONET is employed as the real value, and the error distribution differences between DPC and POLDER retrieved AOD relative to AERONET products are compared in the same conditions. Finally, the influence of scattering angles is analyzed. Satellite observation scattering angles are mostly distributed between 100° and 175°. The distribution of RI and RP is conducted.

Results and Discussions First, the variation of the inversion residual with the wavelength is analyzed. The results show that RI and RP of DPC and POLDER are both at lower levels, which are about 10×10^{-3} and 10×10^{-4} , respectively. The overall distribution of RI and RP from DPC and POLDER is relatively centralized. But for RI@565, RI@865, and RP@865 of DPC, the error bar of them is relatively large (Fig. 1). The inversion results of DPC are generally in good agreement with AERONET, reflecting the DPC ability in aerosol observation. However, AOD@865 is seriously

overvalued (Table 2). Second, the variation of inversion residual with scattering angle is also analyzed. We find that the mean values of RI and RP in mountain areas are higher than those in non-mountain areas, with relatively discrete RI and RP. In non-mountain areas, RI and RP are relatively concentrated, but the standard deviation is large when the scattering angle is greater than 160°. The angular characteristics of the DPC and POLDER residuals are relatively consistent, without significant differences (Figs. 2 and 3). Third, after discussing the inversion results of the mountain and non-mountain areas, the inversion ability of DPC in non-mountain areas is proven to be close to POLDER, while in mountain areas it lags behind POLDER (Fig. 4). Fourth, the influence of polarization on AOD inversion is discussed. It is found that polarization information can significantly improve the AOD inversion effect, with correlation increasing from 0.763 to 0.808, RMSE decreasing from 0.373 to 0.213, mean bias decreasing from 0.117 to 0.012, and the proportion of falling into the expected error section $R_{\rm EE}$ increasing from 44.4% to 55.7% (Fig. 5). Cross comparison between Figs. 4 and 5 shows that deducting large scattering angles in the inversion process can improve the inversion effect, but the effect is not obvious.

Conclusions First, although the error of AOD@865 from DPC is large, it is excellent at 670 nm band. Due to the common participation of all wavelengths in retrieval, there will be certain constraints between them. AOD@670 still exhibits good results even when there is a large error in the 865 nm band, which indicates that DPC has great potential in aerosol remote sensing. Second, in the case of large scattering angles, the simulation accuracy of the radiation transfer model will decrease, thereby affecting the inversion accuracy. However, due to the small number of large scattering angles and multi-angular constraints, the effect of large scattering angles is reduced. Therefore, in practical multi-angle inversion, large scattering angles do not significantly improve the inversion accuracy. Third, polarization information exerts a significant influence on improving aerosol retrieval accuracy. In multi-angular remote sensing, polarization information can supplement intensity information in estimating surface and aerosol models, thereby improving the retrieval accuracy. Fourth, the DPC inversion in non-mountain areas is similar to that of POLDER, but there is a significant difference in mountain areas. Since the spatial resolution of DPC is higher than that of POLDER, many factors including pixel aggregation, geometric reconstruction, and land surface-atmosphere coupling can affect aerosol retrieval results. This will also be a problem to be addressed in aerosol remote sensing of mountainous areas.

Key words remote sensing and sensors; aerosol; polarization; directional polarimetric camera